On the proper orientation number of bipartite graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the proper orientation number of bipartite graphs

An orientation of a graph G is a digraph D obtained from G by replacing each edge by exactly one of the two possible arcs with the same endvertices. For each v ∈ V (G), the indegree of v in D, denoted by d− D (v), is the number of arcs with head v in D. An orientation D of G is proper if d− D (u) 6= d− D (v), for all uv ∈ E(G). The proper orientation number of a graph G, denoted by − →χ (G), is...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

On The Number Of Unlabeled Bipartite Graphs

Let I and O denote two sets of vertices, where I ∩ O = Φ, |I| = n, |O| = r, and Bu(n, r) denote the set of unlabeled graphs whose edges connect vertices in I and O. It is shown that the following two-sided equality holds. ( r+2n−1 r ) n! ≤ |Bu(n, r)| ≤ 2 ( r+2n−1 r )

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

The Complexity of the Proper Orientation Number

Graph orientation is a well-studied area of graph theory. A proper orientation of a graph G = (V,E) is an orientationD of E(G) such that for every two adjacent vertices v and u, d D (v) 6= d D (u) where d D (v) is the number of edges with head v in D. The proper orientation number of G is defined as −→χ (G) = min D∈Γ max v∈V (G) d D (v) where Γ is the set of proper orientations of G. We have χ(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2015

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2014.11.037